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Dispersion of particles by a strong explosion
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The dynamics of particle transport under the influence of localized high energy anomalies (explosions) is a
complicated phenomenon dependent on many physical parameters of both the particle and the medium it resides
in. Here we present a conceptual model that establishes simple scaling laws for particle dispersion in relation
to the energy released in a blast, properties of the medium, physical properties of particles, and their initial
position away from a blast epicenter. These dependencies are validated against numerical simulations and we
discuss predictions of the model which can be validated experimentally. Other applications and extensions to the
framework are also considered.
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I. INTRODUCTION

Understanding transport properties of particle systems
driven by strong energy fluxes is of significant importance to a
number of fields of science and technology. Examples include
nonequilibrium statistical physics [1,2], astrophysical and
geophysical phenomena [3–5], multiphase turbulent flows [6],
inhomogeneous catalysis [7], combustion [8], and many
others [9–12]. An important requirement for these studies is the
development of a rigorous framework which estimates system
parameters (e.g., energy fluxes) from remote (or retrospective)
observations of particles following natural or anthropogenic
phenomena (a volcanic eruption, meteorite impact, supernova
event, blast, etc.). Two revealing examples of this approach are
the well-known pioneering studies of Richardson (estimation
of parameters of turbulent flows from Lagrangian measure-
ments [13]) and Fermi (a remote estimation of a nuclear bomb
yield from “tracer” particle observations [14]).

There is a vast amount of literature devoted to the subject
of particle transport (see Refs. [1,6–8,15] and references
therein). Modern computational models (often called models
of Lagrangian transport) achieve an unprecedented level of
fidelity by matching numerical predictions with experimental
observations [8,12,16]. Unfortunately, although these compu-
tational models are an important predictive tool for practical
applications and validation studies, they are unable to provide
analytical insights into the fundamental transport mechanisms
of these systems, simply because analytical predictions cannot
be deduced numerically. Significant analytical progress in the
understanding of transport phenomena in particle systems
has been achieved by employing scaling and self-similarity
frameworks [1,17,18]. This allows us to describe the dispersion
process by means of power-law functions (scaling laws)
relating to particle displacement and other parameters of
the system—the exponent of these power laws being predi-
cated analytically. Using this knowledge in conjunction with
Lagrangian measurements, one can infer values of important
system parameters that would be challenging to recover by any
other means.

The presented results are in line with this approach. More
specifically: we establish a scaling law for particle dispersion
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caused by a rapid (and localized) energy release (explosion)
and express it as a simple power-law relation between the
particle displacement and the physical parameters of the
system (energy of the explosion, particle properties and their
initial position, etc.). We demonstrate that under a broad range
of conditions the exponents of this scaling law can be deduced
analytically by applying the ideas of self-similarity. We support
our analytical predictions with numerical simulations.

II. MODEL

The following is a simplified conceptual model that allows
us to derive a scaling law for particle displacement. We
consider an infinite domain initially populated with particles
whose density is much larger than the medium density (we
assume this medium to be a gas with known properties). We
restrict ourselves to the case when the density fraction of
particles is relatively small, so particle-particle interactions
can be neglected, and thus consider the dispersion of a single
tracer particle. (The opposite limit of a localized energy release
in a “crowded” system of particles was analyzed in Ref. [19].)
Similar to other studies [20], we assume that the dynamics of
an inertial particle is dominated by viscous drag of the parent
medium and is described by a force equation. For the sake of
simplicity we disregard all other processes that may occur in
the system (e.g., multiphase transitions).

The equation of motion for a particle takes the standard
form

ṙ = v, v̇ = 1

τ
(V − v), (1)

where τ is the Stokes time of the particle, and V(t) ≡ V(r(t),t)
is the velocity field induced by a blast at the position of the
particle.

We assume that the flow field velocity V(r,t) can be
approximately described by the Sedov-Taylor solution for a
strong explosion [21],

V = 2r
5t

�(ζ ), (2)

where ζ = r/R(t) (and r =0, t =0 corresponds to the initial
location and ignition time of the blast) and

R = β

(
Et2

ρ

)1/5

, (3)
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where R(t) is the position of the shock front, E is the total
energy released in the blast, and ρ is the density of the medium.
The dimensionless parameter β is a function of the polytropic
exponent γ (for γ = 7/5: β ≈ 1.033 [21]) and the function
�(ζ ) can be closely approximated by its limiting value �(ζ ) ≈
1/γ , if 0 � ζ � 1, and �(ζ ) = 0 otherwise [21]. The velocity
of the shock front is given by the derivative of expression (3):

Ṙ = 2β

5

(
E

ρt3

)1/5

. (4)

For a particle located at an initial position r = r0 away from
the blast ignition point at t = 0, Eq. (1) reduces to the scalar
form

r̈ + ṙ

τ
− q

τ

r

(t + t0)
= 0, (5)

where q = 2/(5γ ) and t0 is the time required for the shock
wave to reach the particle, estimated from Eq. (3):

t0 =
(

r0

β

)5/2(
ρ

E

)1/2

. (6)

From Eq. (5) we can readily deduce a scaling law for particle
displacement when inertial effects are negligible. By dropping
the first term in this equation we arrive at

r

rref
=

(
t

tref

)q

, (7)

where rref is some arbitrary reference position which defines
the particle location at time t = tref . The rref and tref scales have
been introduced to satisfy two initial conditions of the original
Eq. (5). If we define tref ≡ t0 + τ (i.e., time when inertial
effects become unimportant) then rref = r0 + rτ , where rτ is
the particle displacement during the Stokes time τ (i.e., from
t0 to t0 + τ ).

We can estimate rτ from Eq. (5) in the short-time limit
where the velocity term is insignificant:

r̈ − q

τ

r

(t + t0)
= 0. (8)

The solution of this equation can be represented in terms of
Bessel functions [22], although the complete solution is cum-
bersome. In order to avoid dealing with expressions containing
special functions, we can deduce a simplified estimation of rτ

based on the following kinematic consideration.
After being hit by the front shock wave the particle begins

to accelerate (driven by fluid drag), so its trajectory is given
by the expression

r = r0 + a

2
t2, (9)

where a is the particle acceleration. This expression reflects
that at r(t =0)=r0 and ṙ(t =0)=0 (initially the particle is
at rest). The acceleration term can be estimated by matching
Eq. (9) with the analytical solution of Eq. (8) or by directly
substituting the expression (9) into this equation [acceleration
being the r̈ term in Eq. (8) evaluated at r =r0 and t =0], so
a � q(r0/t0)/τ . Then for t = τ , Eq. (9) leads to a complete
description of the reference position

rref = r0 + r0
q

2

(
τ

t0

)
, (10)

which allows us to write the scaling law (7) in the following
form:

r

r0
=

(
1 + q

2

τ

t0

)(
t

t0 + τ

)q

. (11)

Equation (11) is the main result of the present study. We
can see that the exponent in this scaling law of particle
displacement depends only on the properties of the media
[since q = 2/(5γ )] and is independent of both the properties
of the particles and energy of the explosion. Moreover, since
γ > 1 [21] the particle dispersion is always slower than the
ballistic regime (i.e., q < 1). In general, the dispersion process
can be characterized by two limiting cases, depending on the
value of the ratio τ/t0 in Eq. (11). For given characteristics
of the explosion (energy E), particle, and medium properties
(Stokes time τ ), the ratio τ/t0 can be associated with the initial
position of the particle, r0, by introducing the scale

r∗ = β

(
Eτ 2

ρ

)1/5

. (12)

For the particles initially located within the sphere r � r∗
(below we refer to this case as the “near field”), we arrive at a
simplified form of the scaling law (11):

r

r0
= Q

(
t

t0

)q

, Q =
(

1 + q

2

τ

t0

)(
t0

τ

)q

. (13)

For the opposite case (r � r∗, the “far field”) Q = 1 (see Ap-
pendix A for derivations). We remark that particle properties
can influence the value of Q only in the near field region.

At some point the particle motion described by Eqs. (13)
will be terminated and the particle will come to rest. The
time of this termination corresponds to a disappearance of
the driving velocity V(r,t) in Eq. (1), or a deviation of the
function V(r,t) from the strong explosion model (2) (i.e., when
the shock wave significantly dissipates). A simple estimation
of this termination point can be deduced from the following
arguments.

It is well known that a spherical shock wave loses
energy and eventually transforms into a spherical acoustic
wave [21,23]. This transformation is governed by an interplay
between the nonlinear and dissipative processes. As linear
acoustic waves cannot generate a persistent flow [21], it is
apparent that a particle cannot be advected any further when
this process begins to dominate. Assuming that the shock
wave transformation is mostly due to nonlinear effects, and
applying the condition Ṙ = c to Eq. (4), we can readily deduce
a stopping time

ts =
(

2β

5c

)5/3(
E

ρ

)1/3

, (14)

where c is the speed of sound in the media and all particle
dynamics are confined to t � ts .

Analogously, one can deduce an estimation for ts when
the shock wave transformation is given by a dissipation
process [21,23]. Scaling of the dissipation length is given
by a diffusion law δ(t) ∼ (ν∗t)1/2, where ν∗ is a well-known
aggregated dissipation coefficient determined by viscosity and
thermal conductivity (see Ref. [21], Sec. 96). By equating R(t),
Eq. (3), to δ(t) we arrive at the following expression for the
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stopping time determined by dissipation,

ts �
(

E

ρ

)2( 1

ν∗

)5

, (15)

which yields a different ts value compared to Eq. (14). In
the present study we assume the dissipation coefficient ν∗ is
relatively small, and hence the stopping time is dominated by
nonlinear effects described by Eq. (14).

Setting t = ts in Eqs. (13), we can derive the following
scaling law for the maximum particle displacement,

rmax

r0
∝ r

p

0 Ekτh, (16)

with values p = −5/2, k = 1/2 + 2/(15γ ), h = 1 − 2/(5γ )
for the near field scaling and p = −1/γ , k = 1/(3γ ), h = 0
for the scaling in the far field (derivations of these exponents
can be found in Appendix B).

The scaling of particle displacement with Stokes time
rmax ∝ τh provides insightful information on the effect of
particle properties in the system, since for a spherical particle

τ = d2
pρp

18μ
. (17)

Here, dp is the diameter of the particle and ρp 	 ρ its density;
μ is the dynamic viscosity of the media. For instance, with
all other parameters being equal, Eq. (16) predicts the particle
displacement scales with the media viscosity (in the near field)
as rmax ∝ μ−1+2/(5γ ).

III. NUMERICAL RESULTS

In order to validate our analytical predictions for the
scaling laws of Eq. (16), we numerically solve Eq. (5)
with parameter ranges of r0, E, and τ (see Appendix C
for implementation details). We use the stopping condition
Eq. (14) to calculate a termination point and evaluate the
relative particle displacements rmax/r0 and then estimate the
scaling exponents p,k,h from the log-log plots. In each set
of simulations we change only one parameter, keeping all
other parameters constant. The reported parameter values are
selected to represent a large range of conditions which cross
the near or far field boundary at r∗, with enough data points to
recover the predicted scaling exponents. Additionally, these
values must reside within the time constraint t0 � t � ts .
A multitude of parameter values recover the scaling laws;
however, we plot a single representational value to remove
any possible ambiguity in the results.

As a foundation we model explosions in a diatomic gas (air),
for which γ = 7/5 [21] and q = 2/7 in Eq. (5). The dynamic
viscosity parameter from Eq. (17) is assumed to be a constant
value of μ � 1.983×10−5 Pa/s (air at room temperature), and
the particle density represents steel ball bearings ρp = 7874
kg/m3 for all reported results. The results of analytical
predictions and numerical simulations are summarized in
Table I.

Figure 1 presents a typical output of our simulations. It
depicts the scaling response of a particle’s initial position r0

as it is varied between 0.01 and 5 m to the numerical solution
of Eq. (5). Two regimes of particle dispersion [near and far
field, see Eq. (16)] are indicated via the solid and dashed

TABLE I. Numerically recovered scaling exponents of physical
system parameters against relative particle displacement, Eq. (16),
for an explosion in air (γ = 7/5).

Near field (r � r∗) Far field (r � r∗)

Theory Recovered Theory Recovered

p = −5/2 (−2.5) p = −2.47 p = −5/7 (−0.71) p = −0.72
k = 25/42 (0.6) k = 0.58 k = 5/21 (0.24) k = 0.23
h = 5/7 (0.71) h = 0.71 h = 0 (0) h = 0

lines, respectively. Both results are in good agreement with
the theoretical derivations presented in Table I.

Energy scaling can be determined in a similar manner; with
all other parameters held constant, energy E is adjusted from
452 kJ/kg to 45.2 TJ/kg, the result of which can be seen in
Fig. 2. Here again we recover two scales with good agreement
to theory: the near field (solid line) and far field (dashed line)
against the numerical results.

Finally, we investigate scaling with the Stokes time τ in
Fig. 3. As τ is a function of many parameters [see Eq. (17)],
we fix all medium variables and alter only the particle diameter
(also fixing particle density) over a 1 × 10−4 to 10 μm range.
Scaling in the near field is recovered with good agreement,
and as predicted there is no dependency on τ in the far field.

To verify the scaling laws derived in Eq. (16) are general,
we also compare results for noble gases (i.e., when γ = 5/3
and μ � 1.956×10−5 Pa/s for helium at room temperature).
Here, the near field exponents are predicted to be p = −5/2,
k = 29/50, h = 19/25, which recover to p = −2.5, k = 0.57,
h = 0.75 numerically. In the the far field, p = −3/5, k = 1/5,
h = 0, which also scale as expected recovering p = −0.62,
k = 0.19, h = 0.
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r 0

)

FIG. 1. Scaling dependence of the scaled maximum displacement
rmax/r0 of the numerical solution to Eq. (5) against r0 (◦) with
r∗ indicated as a vertical dotted line. Control parameters for the
presented data are E = 4.52 × 1010 J/kg and τ = 5.52 × 10−6 s.
Recovery of a −5/2 dependence (solid line) in the near field and a
−5/7 dependence (dashed line) in the far field is clearly visible.
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FIG. 2. Scaling dependence of E against the scaled maximum
displacement rmax/r0 of the numerical solution to Eq. (5) (◦). Control
parameters for the presented data are r0 = 0.2 m and τ = 5.52×10−6

s. Recovery of a 25/42 dependence (solid line) in the near field and
a 5/21 dependence (dashed line) in the far field is clearly visible.

IV. DISCUSSION

The scaling laws established above can provide some
predictions that can be validated experimentally. For instance,
it has been observed that there exists a range of particle sizes
for which the inertia of the particles combined with the decay
of the blast wave allows them to overtake the primary shock
front [12]. This effect strongly depends on particle size and
there exists a threshold (i.e., a particle size limit) below which
this effect does not occur [12]. The proposed framework allows
us to formulate a quantitative criterion for this phenomenon.
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r 0
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FIG. 3. Scaling dependence of τ against the scaled maximum
displacement rmax/r0 of the numerical solution to Eq. (5) (◦). Control
parameters for the presented data are r0 = 0.2 m and E = 4.52 ×
1010 J/kg. Recovery of a 5/7 dependence (solid line) in the near field
is clearly visible. Displacement is independent of τ in the far field.

Consider the dispersion of particles by an explosion in
air (γ = 7/5). The existence of an overtake event directly
follows from a comparison of the scaling laws for the position
of the shock wave and particle displacement. The position
of the shock wave scales as t2/5, Eq. (3), while the particle
displacement scales nonuniformly: initially (t0 � τ ) it scales
as t2 with time, Eq. (9), and then slows down to ∝ t2/7 at the
large time limit, Eq. (13). This implies that at the large time
limit the particle is always behind the shock wave and can
only overtake it during the initial (inertial) stage. Since particle
displacement during the initial stage is given by Eq. (9), this
leads to the following condition for the particle to be in front
of the shock wave:

β

(
Et2

ρ

)1/5

= r0

(
t

t0

)2/5

� r0 + (a/2)(t − t0)2, t � t0.

(18)
By introducing a new variable y = (t/t0)1/5, this condition can
be recast to a nondimensional form,


(y) = y2 − χ (y5 − 1)2 − 1 � 0, y � 1, (19)

where χ = (q/2)(t0/τ ) � 1 and 
(1) = 0.
The function 
(y) has a single real root y1 satisfying the

condition y > 1 with its approximate value y1 ≈ (1/χ )1/8 ∝
(τ/t0)1/8 	 1. This root determines the time when the particle
catches up and “penetrates through” the decelerating shock
wave (since t = t1 =y5

1 t0). This time corresponds to the
particle displacement r1 =y2

1r0 � r0, after which the particle
decelerates and the shock wave overtakes it again.

Similarly, the second time the shock wave overtakes the
particle follows from Eqs. (3) and (13):

r1

(
t

t1

)2/5

� r1 + r0Q

(
t − t1

t0

)2/7

, t � t1, (20)

or in a nondimensional form (substituting the t1 =y5
1 t0 and

r1 =y2
1r0 parameters from the first crossing and y as defined

above),

�(y) = y2 − Q
(
y5 − y5

1

)2/7 − y2
1 � 0, y � y1, (21)

and �(y1) = 0. The positive real root of �(y) has an approx-
imate value y2 ≈ Q7/4 ∝ (τ/t0)5/4 	 1. Both roots (y1,y2)
are dependent on the characteristics of the explosion, and the
parameters of medium and particle (via constants χ,Q). It is
evident that the consistency condition, y2 � y1, always holds
for sufficiently heavy particles and for particles initially located
in proximity to the center of an explosion.

In essence, we have identified three consecutive events
where the particle and shock wave cross (one possible set
of parameters which observes this phenomena is presented
in Fig. 4). At t = t0 (r =r0), the shock wave initially reaches a
particle which is at rest. Driven by inertia, the particle overtakes
the decelerating shock wave at t = t1 > t0 (r =r1). Finally, at
t = t2 > t1 (r =r2) the shock wave again catches up to the
decelerating particle and overtakes it. The zero-order estimates
of t1 and t2 derived from Eqs. (19) and (21), respectively,
obtain an acceptable agreement with the numerical results
of Fig. 4: t1 ≈ 2×10−8 (estimated) = 9×10−9 (numeric) and
t2 ≈ 2.5×10−7 (estimated) = 9.5×10−7 (numeric).

An experimental validation of the “wave-particle” overtake
phenomenon is a challenging undertaking which requires
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FIG. 4. Shock wave trajectory (dashed curve) and particle posi-
tion (solid curve) after an explosion with a yield E = 0.1 J/kg. A
steel particle with diameter dp = 25 nm is initially at rest at position
r0 = 5 mm, then starts accelerating at time t0 (◦) after the shock
passes over. The particle overtakes the shock at t1 (•), then at a later
time t2 (�) it is recaptured and remains behind the shock wave for
the rest of the explosive event.

precise (and simultaneous) measurements of the positions
of shock waves and tracer particles; as such there are few
publications on this subject. To the best of our knowledge
there is only a single experimental study, Ref. [12], in which
the wave-particle overtake phenomenon has been observed
and reported. The positions of the particles and shock in this
study have been detected by means of two 150-kV flash x-ray
pulsers and six piezoelectric pressure transducers, respectively.
Our interpretation of these phenomena, presented in this paper,
stems from a simple kinematic analysis of the scaling laws for
particle displacement and is in qualitative agreement with the
experimental observations reported in Ref. [12].

Another interesting effect associated with an explosive
energy release in a particle system is the formation of a
residual sparseness (cavity) in an initially uniform particle
distribution (e.g., dust) after the particles have been displaced
by the shock wave from their initial position. We can easily
estimate the scale of this cavity by invoking the analytical
framework presented above. In fact, the edge of the cavity
is formed from the far field particles, for which t0 	 τ . By
setting t = ts and r ∼ r0 ∼ rcav in Eq. (13) we can derive an
estimate

rcav � κ

(
E

ρc2

)1/3

, (22)

where κ = (4β5/25)1/3 ≈ 0.09, which can also be established
based on dimensional arguments. This expression provides
a characteristic scale of the density of particle distribution
associated with the residual sparseness caused by an explosion
(for a visual example of such a cavity, see images in Ref. [19]
and Fig. 1 of Ref. [24]).

V. CONCLUSIONS

In summary, we have presented scaling laws for particle
displacement caused by a rapid (and localized) energy release
(explosion). These scaling laws account for particle properties
(mass, diameter, density), properties of the medium a particle is
advected through (viscosity, density, speed of sound), and the
energy of the explosion dissipated through the shock front. We
demonstrated that by employing a conceptual model of particle
displacement that includes the strong explosion model and
simplified particle kinematics, the exponents of these scaling
laws can be derived analytically, which are in good agreement
with numerical simulations.

This framework has been constructed in a manner such
that more realistic descriptions (different models of explosion,
non-Stokes drag, multiphase transformations, etc.) can be
implemented to ascertain improved estimations of each scaling
law outlined here. For instance, taking inertial effects of the
fluid flow into account leads to an equation of motion with a
different form of drag [21],

ṙ = v, v̇ = 1

λ
(V − v)2, (23)

where the parameter λ has a dimension of length and provides
an aggregated characteristic of particles and media (size,
density, viscosity), similar to Eq. (17). It is evident from this
equation that the same scaling laws for particle displacement
exist in the far field, viz., with the exponents given in Table I.
This and further additions will be elaborated upon in our
future work. We anticipate that the results presented in this
study will be useful in evaluating high fidelity models of
particle transport and interpreting experimental observations
of explosion phenomena.

APPENDIX A: NEAR AND FAR FIELD LIMITS

Equation (11) is characterized by two limiting conditions,
dependent on the ratio τ/t0.

We initially investigate the “far field,” where τ/t0 � 1 and
r � r∗ by taking the limit

lim
τ/t0→0

r

r0
= (1 + 0)

(
t

t0

)q

(A1)

and define the simple scaling law

r

r0
= Q

(
t

t0

)q

, Q = 1. (A2)

The “near field” conditions are obtained via the condition
τ/t0 	 1 (r < r∗). This limit is given by

lim
τ/t0→∞

r

r0
=

(
1 + q

2

τ

t0

)(
t

τ

)q

(A3)

and defines the near field scaling law as

r

r0
= Q

(
t

t0

)q

, Q =
(

1 + q

2

τ

t0

)(
t0

τ

)q

. (A4)
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APPENDIX B: SCALING LAW OF MAXIMUM PARTICLE
DISPLACEMENT

To derive the scaling law for maximum particle displace-
ment in Eq. (16) we set t = ts in Eqs. (13) such that

rmax

r0
= Q

(
ts

t0

)q

(B1)

= Q

[( 2β

5

)5/3( E
ρc5

)1/3

(
r0
β

)5/2( ρ

E

)1/2

]q

(B2)

= Q

[(
2

5

)5/3

β25/6

(
E

ρ

)5/6

c−5/3r
−5/2
0

]q

. (B3)

For the general case, where q = 2/(5γ ), we arrive at

rmax

r0
= Q

[(
2

5

) 2
3γ

β
5

3γ

(
E

ρ

) 1
3γ

c
− 2

3γ r
− 1

γ

0

]
. (B4)

For the far field, Q = 1 and we recover the scaling
conditions

rmax

r0
∝ r

− 1
γ

0 E
1

3γ τ 0. (B5)

The near field requires further treatment as Q in this regime
is nonscalar:

Q =
[

1 + q

2

τ(
r0
β

)5/2( ρ

E

)1/2

][(
r0
β

)5/2( ρ

E

)1/2

τ

]q

(B6)

=
(

r0

β

)5q/2(
ρ

E

)q/2

τ−q

+ q

2

(
r0

β

)−5/2+5q/2(
ρ

E

)−1/2+q/2

τ 1−q (B7)

=
(

r0

β

)1/γ (
ρ

E

)1/5γ

τ−2/5γ

+ 1

5γ

(
r0

β

)−5/2+1/γ (
ρ

E

)−1/2+1/5γ

τ 1−2/5γ . (B8)

Substituting Eq. (B8) into Eq. (B4), we find

rmax

r0
=

[(
r0

β

) 1
γ
(

ρ

E

) 1
5γ

τ
− 2

5γ + 1

5γ

(
r0

β

)− 5
2 + 1

γ
(

ρ

E

)− 1
2 + 1

5γ

τ
1− 2

5γ

][(
2

5

) 2
3γ

β
5

3γ

(
E

ρ

) 1
3γ

c
− 2

3γ r
− 1

γ

0

]
(B9)

=
(

2β

5c

) 2
3γ

(
ρ

E

)− 2
15γ

τ
− 2

5γ + 1

5γ

(
2

5

) 2
3γ

β
5
2 + 2

3γ c
− 2

3γ r
− 5

2
0 τ

1− 2
5γ

(
ρ

E

)− 1
2 − 2

15γ

. (B10)

This result reveals two scales in the near field, with a critical
point at

N∗ = 5γ

τ

(
r0

β

)5/2(
ρ

E

)1/2

= 5γ t0

τ
, (B11)

representing the position at which the acceleration term
dominates the initial position term of Eqs. (10) and (11) in
the main text. N∗ is inversely proportional to τ/t0 and as such
N∗ 	 1 represents very small times, with N∗ � 1 being the
primary term.

We can now recover the scaling conditions

rmax

r0

∣∣∣∣
N∗	1

∝ r0
0 E

2
15γ τ

− 2
5γ , (B12)

rmax

r0

∣∣∣∣
N∗�1

∝ r
− 5

2
0 E

1
2 + 2

15γ τ
1− 2

5γ . (B13)

N∗ 	 1 exists only in the limit t → t0 and can therefore be
dropped from consideration.

Finally, as an example of scaling conditions, we can use
γ = 7/5 (air) to obtain the values for the near field quoted in
Table I of the main text: p = −5/2, k = 25/42, h = 5/7.

APPENDIX C: NUMERICAL TREATMENT OF THE EQ. (5)
ORDINARY DIFFERENTIAL EQUATION (ODE)

The second order ODE of Eq. (5) was decoupled to a set of
first order ODEs. Let y1 = y and y2 = ẏ, giving the first order
system

ẏ1 = y2 (C1)

ẏ2 = − 1

τ
y2 + q

τ

y1

(t + t0)
. (C2)

This system was then solved in MATLAB using the ODE15S

stiff solver, which implements a variable order (variable step
size) method based on finite difference formulas.
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